Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Med Res Rev ; 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38591229

RESUMO

Metal complexes based on N-heterocyclic carbene (NHC) ligands have emerged as promising broad-spectrum antitumor agents in bioorganometallic medicinal chemistry. In recent decades, studies on cytotoxic metal-NHC complexes have yielded numerous compounds exhibiting superior cytotoxicity compared to cisplatin. Although the molecular mechanisms of these anticancer complexes are not fully understood, some potential targets and modes of action have been identified. However, a comprehensive review of their biological mechanisms is currently absent. In general, apoptosis caused by metal-NHCs is common in tumor cells. They can cause a series of changes after entering cells, such as mitochondrial membrane potential (MMP) variation, reactive oxygen species (ROS) generation, cytochrome c (cyt c) release, endoplasmic reticulum (ER) stress, lysosome damage, and caspase activation, ultimately leading to apoptosis. Therefore, a detailed understanding of the influence of metal-NHCs on cancer cell apoptosis is crucial. In this review, we provide a comprehensive summary of recent advances in metal-NHC complexes that trigger apoptotic cell death via different apoptosis-related targets or signaling pathways, including B-cell lymphoma 2 (Bcl-2 family), p53, cyt c, ER stress, lysosome damage, thioredoxin reductase (TrxR) inhibition, and so forth. We also discuss the challenges, limitations, and future directions of metal-NHC complexes to elucidate their emerging application in medicinal chemistry.

2.
Org Biomol Chem ; 22(15): 3068-3072, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38546264

RESUMO

Allylphosphine oxide compounds are important building blocks with broad applications in organic synthesis and pharmaceutical science. Herein, we report an unprecedented palladium-catalyzed allylation of phosphine oxides with vinylethylene carbonates, producing various phosphorus allyl alcohols in excellent yields with high Z-selectivity. In addition, gram-scale synthesis and further functional group transformations demonstrate the practical utility of this synthetic method.

3.
J Org Chem ; 88(20): 14619-14633, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37789599

RESUMO

Construction of pyrrolidinyl-spiroindoles with easily available starting materials has attracted considerable attention from the synthesis community and is in great demand. Here, we describe a base-promoted formal (3 + 2) cycloaddition of α-halohydroxamates with alkenyl-iminoindolines. The present methodology features mild reaction conditions and a broad substrate scope with up to 99% yield and excellent diastereoselectivity. The versatility of this approach is demonstrated through valuable synthetic transformations. Preliminary mechanistic studies shed light on the mechanism of this cycloaddition process.

4.
Angew Chem Int Ed Engl ; 62(40): e202309572, 2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37581950

RESUMO

Catalytic acylation of organohalides with aldehydes is an ideal strategy for the direct synthesis of ketones. However, the utilization of unactivated alkyl halides in such a transformation remains a formidable challenge. In this study, we developed a cross-coupling reaction of aldehydes with unactivated alkyl halides through N-heterocyclic carbene catalysis. With this protocol, various ketones could be rapidly synthesized from readily available starting materials under mild conditions. This organocatalytic system was successfully applied in the late-stage functionalization of pharmaceutical derivatives. Mechanistic investigations suggest a closed-shell nucleophilic substitution mechanism for this reaction.

5.
Front Immunol ; 14: 1178662, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37275856

RESUMO

Gasdermin D (GSDMD)-mediated pyroptosis and downstream inflammation are important self-protection mechanisms against stimuli and infections. Hosts can defend against intracellular bacterial infections by inducing cell pyroptosis, which triggers the clearance of pathogens. However, pyroptosis is a double-edged sword. Numerous studies have revealed the relationship between abnormal GSDMD activation and various inflammatory diseases, including sepsis, coronavirus disease 2019 (COVID-19), neurodegenerative diseases, nonalcoholic steatohepatitis (NASH), inflammatory bowel disease (IBD), and malignant tumors. GSDMD, a key pyroptosis-executing protein, is linked to inflammatory signal transduction, activation of various inflammasomes, and the release of downstream inflammatory cytokines. Thus, inhibiting GSDMD activation is considered an effective strategy for treating related inflammatory diseases. The study of the mechanism of GSDMD activation, the formation of GSDMD membrane pores, and the regulatory strategy of GSDMD-mediated pyroptosis is currently a hot topic. Moreover, studies of the structure of caspase-GSDMD complexes and more in-depth molecular mechanisms provide multiple strategies for the development of GSDMD inhibitors. This review will mainly discuss the structures of GSDMD and GSDMD pores, activation pathways, GSDMD-mediated diseases, and the development of GSDMD inhibitors.


Assuntos
COVID-19 , Piroptose , Humanos , Gasderminas , Inflamassomos/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo
6.
Org Lett ; 25(22): 4070-4074, 2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37231656

RESUMO

Conjugation of carbohydrates to ferrocene scaffolds is of great value in drug design, given the nontoxic and lipophilic nature of ferrocene. However, the efficient and stereoselective synthesis of C-ferrocenyl glycosides remains a challenge. Herein, we developed a Pd-catalyzed stereoselective C-H glycosylation to provide rapid access to sole bis-C-ferrocenyl glycosides in good to high yields (up to 98% yield) with exclusive stereoselectivity. A diverse range of glycosyl chlorides were well tolerated, including d-mannose, d-glucose, l-xylose, l-rhamnose, d-mannofuranose, and d-ribofuranose. Additionally, a mononuclear PdII intermediate was characterized by X-ray single-crystal diffraction, and might participate in the C-H palladation step.


Assuntos
Glicosídeos , Paládio , Glicosilação , Paládio/química , Metalocenos , Catálise , Estereoisomerismo , Glicosídeos/química
7.
Nat Prod Rep ; 40(5): 988-1021, 2023 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-36205211

RESUMO

Covering: 2011 to 2021Trifluoromethyl (CF3)-modified natural products have attracted increasing interest due to their magical effect in binding affinity and/or drug metabolism and pharmacokinetic properties. However, the chemo and regioselective construction of natural products (NPs) bearing a CF3 group still remains a long-standing challenge due to the complex chemical scaffolds and diverse reactive sites of NPs. In recent years, the development of late-stage functionalization strategies, including metal catalysis, organocatalysis, light-driven reactions, and electrochemical synthesis, has paved the way for direct trifluoromethylation process. In this review, we summarize the applications of these strategies in the late-stage trifluoromethylation of natural products in the past ten years with particular emphasis on the reaction model of each method. We also discuss the challenges, limitations, and future prospects of this approach.


Assuntos
Produtos Biológicos , Hidrocarbonetos Fluorados/química , Metilação , Catálise
8.
Angew Chem Int Ed Engl ; 61(44): e202207824, 2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-36082970

RESUMO

Oxidative N-heterocyclic carbene (NHC) organocatalysis, typically leading to the formation of acyl azolium reactive intermediates, constitutes one of the most important activation strategies for the NHC-catalyzed chemical transformations. Here, we report an unprecedented oxidative radical NHC catalysis by using peroxyester as the external single-electron oxidant to realize divergent difunctionalization of olefins. The key to success of this chemistry is the catalytic generation of oxygen radicals that could trigger an intermolecular hydrogen atom transfer to activate the inert C-H bonds, thereby enabling the productive radical relay process. With this protocol, commonly used general chemicals could serve as radical precursors to allow efficient synthesis of value-added products in a straightforward and cost-effective manner. Preliminary mechanistic investigations, including control experiments and DFT calculations, shed light on the NHC organocatalytic radical reaction mechanism.

9.
Org Biomol Chem ; 20(17): 3486-3490, 2022 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-35388864

RESUMO

The efficient construction of cyclopropyl spiroindoline skeletons and the exploration of related follow-up synthetic transformations have elicited considerable interest amongst members of the chemistry community. Here, we describe a formal (2 + 1) annulation and three-component (1 + 1 + 1) cascade cyclisation via sulphur ylide cyclopropanation under mild conditions. The spiro-cyclopropyl iminoindoline moiety can be readily transformed into another medicinally interesting pyrrolo[3,4-c]quinoline framework through a novel rearrangement process.


Assuntos
Enxofre , Ciclização
10.
J Org Chem ; 87(8): 5229-5241, 2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35349296

RESUMO

An N-heterocyclic carbene organocatalytic 1,4-difunctionalization of 1,3-enynes was developed. This organocatalytic strategy was suitable for a broad spectrum of substrates to efficiently synthesize allenic ketones bearing diverse substituents. Preliminary mechanistic studies suggest a radical reaction pathway for this organocatalytic acylalkylation process.


Assuntos
Cetonas , Metano , Catálise , Metano/análogos & derivados
11.
Chem Sci ; 13(9): 2584-2590, 2022 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-35356672

RESUMO

The Suzuki-Miyaura cross-coupling of C(sp3)-hybridised boronic compounds still remains a challenging task, thereby hindering the broad application of alkyl boron substrates in carbon-carbon bond-forming reactions. Herein, we developed an NHC/photoredox dual catalytic cross-coupling of alkyl trifluoroborates with acid fluorides, providing an alternative solution to the classical acylative Suzuki coupling chemistry. With this protocol, various ketones could be rapidly synthesised from readily available materials under mild conditions. Preliminary mechanistic studies shed light on the unique radical reaction mechanism.

12.
Angew Chem Int Ed Engl ; 61(15): e202116629, 2022 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-35112461

RESUMO

The direct functionalization of inert C(sp3 )-H bonds under environmentally benign catalytic conditions remains a challenging task in synthetic chemistry. Here, we report an organocatalytic remote C(sp3 )-H acylation of amides and cascade cyclization through a radical-mediated 1,5-hydrogen atom transfer mechanism using N-heterocyclic carbene as the catalyst. Notably, a diversity of nitrogen-containing substrates, including simple linear aliphatic carbamates and ortho-alkyl benzamides, can be successfully applied to this organocatalytic system. With the established protocol, over 120 examples of functionalized δ-amino ketones and isoquinolinones with diverse substituents were easily synthesized in up to 99 % yield under mild conditions. The robustness and generality of the organocatalytic strategy were further highlighted by the successful acylation of unactivated C(sp3 )-H bonds and late-stage modification of pharmaceutical molecules. Then, the asymmetric control of the radical reaction was attempted and proven feasible by using a newly designed chiral thiazolium catalyst, and moderate enantioselectivity was obtained at the current stage. Preliminary mechanistic investigations including several control reactions, KIE experiments, and computational studies shed light on the organocatalytic radical reaction mechanism.


Assuntos
Amidas , Metano , Acilação , Ciclização , Metano/análogos & derivados , Metano/química
13.
Org Lett ; 23(4): 1451-1456, 2021 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-33522815

RESUMO

Oxindoles and ß-lactams are attractive structural motifs because of their unique biological importance. However, the fusion of the two moieties featuring 3,3'-spirocyclic scaffolds is a challenging task in organic synthesis. Herein we designed a novel type of oxindole-based azaoxyallyl cation synthons, which could readily participate in the [3 + 1] cyclization with sulfur ylides. With this protocol, a collection of 3,3-spiro[ß-lactam]-oxindoles were facilely produced in up to 94% yield with perfect diastereoselectivity.

14.
J Org Chem ; 86(3): 2582-2592, 2021 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-33423501

RESUMO

A highly chemoselective [2+1] annulation of α-alkylidene pyrazolones with α-bromonitroalkenes has been achieved under mild conditions. α-Alkylidene pyrazolones were unprecedentedly used as a C1 synthon to participate in annulation reactions, providing access to diverse vinylcyclopropane-based pyrazolone products. In addition, a spectrum of pharmaceutically interesting pyrazole-fused pyranone oximes could be rapidly obtained through a [2+1] annulation/rearrangement sequential process. Computational studies disclosed the origin of the observed chemoselectivity of the [2+1] cycloaddition.

15.
Org Lett ; 23(3): 814-818, 2021 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-33501832

RESUMO

A Lewis acid-promoted [6+1] annulation between sulfur ylides and modified vinyl benzoxazinanones was described. In this reaction, the newly designed vinyl benzoxazinanones could serve as a novel six-atom synthon, and the key to success is the installation of an electron-withdrawing group on the alkene moiety of the benzoxazinanones. A broad range of substrates are compatible with this mild reaction system, thereby providing a facile and practical approach for constructing a benzo[b]azepine skeleton.

16.
Chem Soc Rev ; 50(3): 1522-1586, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33496291

RESUMO

The efficacy and synthetic versatility of asymmetric organocatalysis have contributed enormously to the field of organic synthesis since the early 2000s. As asymmetric organocatalytic methods mature, they have extended beyond the academia and undergone scale-up for the production of chiral drugs, natural products, and enantiomerically enriched bioactive molecules. This review provides a comprehensive overview of the applications of asymmetric organocatalysis in medicinal chemistry. A general picture of asymmetric organocatalytic strategies in medicinal chemistry is firstly presented, and the specific applications of these strategies in pharmaceutical synthesis are systematically described, with a focus on the preparation of antiviral, anticancer, neuroprotective, cardiovascular, antibacterial, and antiparasitic agents, as well as several miscellaneous bioactive agents. The review concludes with a discussion of the challenges, limitations and future prospects for organocatalytic asymmetric synthesis of medicinally valuable compounds.


Assuntos
Produtos Biológicos/química , Química Farmacêutica , Compostos Orgânicos/química , Aminas/química , Antineoplásicos/síntese química , Antineoplásicos/química , Antivirais/síntese química , Antivirais/química , Produtos Biológicos/síntese química , Catálise , Química Farmacêutica/métodos , Metano/análogos & derivados , Metano/química , Ácidos Fosfóricos/química , Estereoisomerismo
17.
Chemistry ; 27(10): 3238-3250, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33034925

RESUMO

Over the past decades, N-heterocyclic carbene (NHC) organocatalysis has undergone a flourish of development on the basis of closed-shell reaction paths. By contrast, the emerging area of single-electron transfer (SET) reactions enabled by NHC catalysis still remain underdeveloped, but offer plenty of opportunities to develop new catalytic modes and useful synthetic methods. A number of interesting transformations were triggered by the SET process from the electron-rich Breslow intermediates to various single-electron acceptors. In additions, recent studies revealed that the Breslow radical cations could also be generated by single-electron reduction of the electron-deficient acyl azolium intermediates. These discoveries open a new avenue for NHC organocatalysis to harness radical reactions. The present review will focus on the exciting advancements in the dynamic area of radical NHC organocatalysis.

18.
Chem Commun (Camb) ; 56(82): 12439-12442, 2020 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-32940311

RESUMO

Efficient construction of medium-sized lactones has attracted considerable interest over several decades, but remains a formidable challenge in synthetic chemistry. Here, we describe an unprecedented palladium-catalysed regioselective [5 + n] cyclisation (n = 5, 6, and 7) between vinylethylene carbonates and various anhydrides. Catalytic transformation occurs under mild, room-temperature conditions and offers an exceptional substrate scope. A broad spectrum of medium-sized bislactones with skeletal diversity can be obtained easily.

19.
J Org Chem ; 85(15): 9454-9463, 2020 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-32687362

RESUMO

Asymmetric construction of α-carbolinones with easily available starting materials has recently attracted considerable attention from the synthesis community, and the development of effective catalysis for this target is in great demand. Here, a bifunctional Brønsted base catalyzed asymmetric [3 + 3] cyclization of indolin-2-imines and α,ß-unsaturated N-acylated succinimides was developed by using the strategy of noncovalent bonding catalysis. With this organocatalytic protocol, a variety of tetrahydro-α-carbolinones bearing different substituents were synthesized with up to 99% yield and up to 96:4 er.

20.
Pharm Biol ; 58(1): 498-509, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32476554

RESUMO

Context: In folk medicine, erxian decoction (EXD) is used to treat perimenopausal syndrome in women. It is also used clinically to treat depression, but the mechanism remains unknown.Objectives: To investigate the neuroprotective effect of EXD, and its antidepressant potential.Materials and methods: ICR mice were treated with EXD (0.5, 1.5 and 4.5 g/kg i.g.) and fluoxetine (6.0 mg/kg i.g.) for 10 days. On day 10 of the treatment, depression-like behaviour was induced by reserpine (2.5 mg/kg injected i.p.), and after 24 h of reserpine administration, it was assessed using the tail suspension and forced swimming tests. MTT assay, lactate dehydrogenase test, flow cytometry analysis, Hoechst staining and western blotting were used to assess the apoptosis of PC12 cells. Apoptosis proteins and neurotransmitter were tested in vitro and in vivo, respectively.Results: MTT assay results showed corticosterone prevented cell growth, but EXD at concentrations of 100, 200 and 400 µg/mL restored cell viability (EC50: 204.016 µg/mL). EXD decreased lactate dehydrogenase leakage from 63.48 to 43.60 U/L, and upregulated expression of Bcl-2 while the expression of Bax, caspase-3 and caspase-8 were decreased in vivo and in vitro. Moreover, EXD improved depression-like behaviour in mice, and 4.5 g/kg EXD treatment increased the secretion of serotonin, dopamine and norepinephrine by 67.44, 28.12 and 42.12 pg/mg, respectively, in hypothalamus compared to that of reserpine group.Discussion and conclusions: EXD demonstrated neuroprotective effects and improved depression-like behaviour in mice. Further research should be focussed on the mechanism of the active components in EXD.


Assuntos
Sobrevivência Celular/efeitos dos fármacos , Corticosterona/toxicidade , Depressão/tratamento farmacológico , Medicamentos de Ervas Chinesas/uso terapêutico , Medicina Tradicional Chinesa , Animais , Sobrevivência Celular/fisiologia , Depressão/psicologia , Relação Dose-Resposta a Droga , Medicamentos de Ervas Chinesas/farmacologia , Masculino , Medicina Tradicional Chinesa/métodos , Camundongos , Camundongos Endogâmicos ICR , Células PC12 , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA